\begin{tabbing} ecl{-}es{-}act(${\it es}$;$m$;$x$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=ecl\_ind($x$;$k$,${\it test}$.$\lambda$$e_{1}$,$e_{2}$. False;$a$,$b$,${\it aa}$,${\it ab}$.$\lambda$$e_{1}$,$e_{2}$. ${\it aa}$($e_{1}$,$e_{2}$)\+ \\[0ex]$\vee$ \=existse{-}between3(${\it es}$;$e_{1}$;$e_{2}$;$e$.ecl{-}es{-}halt(${\it es}$;$a$)(0,$e_{1}$,es{-}pred(${\it es}$; $e$))\+ \\[0ex]\& ${\it ab}$($e$,$e_{2}$));$a$,$b$,${\it aa}$,${\it ab}$.$\lambda$$e_{1}$,$e_{2}$. ${\it aa}$($e_{1}$,$e_{2}$) \-\\[0ex]\& $\forall$$n$$\in$ecl{-}ex($b$).alle{-}between1(${\it es}$;$e_{1}$;$e_{2}$;$e$.$\neg$ecl{-}es{-}halt(${\it es}$;$b$)($n$,$e_{1}$,$e$)) \\[0ex]$\vee$ \=${\it ab}$($e_{1}$,$e_{2}$)\+ \\[0ex]\& $\forall$\=$n$$\in$ecl{-}ex($a$).\+ \\[0ex]alle{-}between1(${\it es}$;$e_{1}$;$e_{2}$;$e$.$\neg$ecl{-}es{-}halt(${\it es}$;$a$)($n$,$e_{1}$,$e$));$a$,$b$,${\it aa}$,${\it ab}$.$\lambda$$e_{1}$,$e_{2}$. ${\it aa}$($e_{1}$,$e_{2}$) \-\-\\[0ex]\& $\forall$$n$$\in$0.ecl{-}ex($b$).alle{-}between1(${\it es}$;$e_{1}$;$e_{2}$;$e$.$\neg$ecl{-}es{-}halt(${\it es}$;$b$)($n$,$e_{1}$,$e$)) \\[0ex]$\vee$ \=${\it ab}$($e_{1}$,$e_{2}$)\+ \\[0ex]\& $\forall$$n$$\in$0.ecl{-}ex($a$).alle{-}between1(${\it es}$;$e_{1}$;$e_{2}$;$e$.$\neg$ecl{-}es{-}halt(${\it es}$;$a$)($n$,$e_{1}$,$e$));$a$,${\it aa}$.$\lambda$$e_{1}$,$e_{2}$. \-\\[0ex]es{-}pstar{-}q(${\it es}$;$x$,$y$.\=ecl{-}es{-}halt(${\it es}$;$a$)\+ \\[0ex](0 \\[0ex],$x$ \\[0ex],$y$);$x$,$y$.${\it aa}$($x$,$y$);$e_{1}$;$e_{2}$);$a$,$n$,${\it aa}$.\=if $m$=$_{2}$$n$$\rightarrow$ ecl{-}es{-}halt(${\it es}$;$a$)(0)\+ \\[0ex]else ${\it aa}$ fi;$a$,$n$,${\it aa}$.${\it aa}$;$a$,$l$,${\it aa}$.${\it aa}$) \-\-\- \end{tabbing}